Dr sc ing Inese Filipova


2016.    PhD degree (Dr. sc. ing.)  in Wood Materials and Technologies, Latvia University of Agriculture, Forest Faculty  2007.   Master degree in Chemistry (Msc. chem.), University of Latvia, Faculty of Chemistry  2005.   Engineer degree of Wood Chemistry and Technology, Technical University of Riga, Faculty of Material Science and Applied Chemistry   

Scientific interests and competence

Wood chemistry, wood fibers, pulping, cellulose, nanocellulose

The most important projects

2021. - 2023. Development of ecological and biodegradable materials from natural fibres with functional biopolymer additives (EcBioMa) 2020.07. - 2020.12. Integration of reliable technologies for protection against Covid-19 in healthcare and high-risk areas 2018. - 2121. Wood Mimicking Biocomposites (WOODMIMIC)  2017. - 2020. ERAF Postdoc Project. Study of novel method for nanocellulose isolation from biomass and its residues 2017. - 2019. ERAF Project. Rigid Polyurethane/Polyisocyanurate Foam Thermal Insulation Material Reinforced with Nano/MicroSize Cellulose  2014. - 2015. ERAF Project. Investigation of ecofriendly molded paper fibre materials for use of food packing with additives from renewable resources 

More information

from 2021. Member of journal "Materials" Topic Editors Board from 2018. Expert of Latvian Council of Science in Chemical engineering  Additional professional education: 2011. Specialised course "Product oriented wood supply and fibre processing", KTH  Royal Institute of Technology, Stockholm, Sweden  2007. Specialised course "Modern analytical tools for Pulp and Paper", Abo Academy, Turku, Finland

The most important publications

Filipova, I.; Irbe, I.; Spade,M.; Skute, M.; Dabolina, I.; Baltina, I.;Vecbiskena, L. 2021 Mechanical and Air Permeability Performance of Novel Biobased Materials from Fungal Hyphae and Cellulose Fibers. Materials, 14, 136. Neibolts N., Platnieks O., Gaidukovs S., Barkane A., Thakur V.K., Filipova I., Enachescu M., Mihai G., Zelca Z., Yamaguchi K. 2020 Effects of Nanofibrillated Cellulose and Graphene Nanoplatelets Addition on the Morphology of Biobased Poly(butylene succinate) Nanofibers Processed by Needle-Free Electrospinning. Materials Today Chemistry 17, 100301 Platnieks O., Gaidukovs S., Barkane A., Sereda A., Gaidukova G., Grase L., Thakur V.K., Filipova I., Fridrihsone V., Skute M., Laka M. 2020 Bio-Based Poly(butylene succinate) / Microcrystalline Cellulose /Nanofibrillated Cellulose Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies. Polymers, 12(7), 1-20 (1472). Filipova, I., Serra, F., Tarrés, Q., Mutjé, P., Delgado-Aguilar, M. 2020 Oxidative treatments for cellulose nanofibers production: a comparative study between TEMPO-mediated and ammonium persulfate oxidation. Cellulose, in press. Laka M, Skute M., Filipova I., Fridrihsone V., Grinfelds U., Zoldners J., Spade M., Sivacovs, I. 2020 Use of fine fibre cellulose for reinforcing of paper. Cellulose Chemistry and Technology,  54 (1-2), 113-117. Platnieks O., Gaidukovs S., Barkane A., Gaidukova G., Grase L., Thakur V.K., Filipova I., Fridrihsone V., Skute M., Laka M. 2020 Highly loaded cellulose/poly (butylene succinate) sustainable composites for woody-like advanced materials application Molecules 25 (1):121; Filipova I., Fridrihsone V., Cabulis U., Berzins A. 2018 Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing. Nanomaterials, 8(9), 640;  Andersons J., Filipova I., Kirpluks M. and Cabulis U. 2018 Evaluation of the apparent interfacial shear strength of nanocellulose/PVA composites Key Engineering Materials 774:54-59 Andze L., Zoldners J., Rozenberga L. Sable I., Skute M., Laka M., Vecbiskena L., Andzs M., Actins A. 2018 Effect of molecular chitosan on recovered paper properties described by mathematic model. Cellulose Chemistry and Technology, 52 (9-10), 873-881. Vikele L., Laka M., Sable I., Rozenberga L., Grinfelds U., Zoldners J., Passas R., Mauret E. 2017 Effect of chitosan on properties of paper for packaging. Cellulose chemistry and technology, 51 (1-2), 67-73. Sable I., Grīnfelds U., Vīķele L., Rozenberga L., Zeps M., Neimane U., Jansons A. 2017 Effect of Refining on the Properties of Fibres from Young Scots (Pinus Sylvestris) and Lodgepole Pines (Pinus Contorta). Baltic Forestry, 23(2), 529-533. Sable I., Grinfelds U., Vikele L., Rozenberga L., Lazdina D., Zeps M., Jansons A. 2017 Chemical composition and fiber properties of fast-growing species in Latvia and its potential for forest bioindustry.  Forestry Studies, 66, 27-32. Rozenberga L., Skute M.,  Belkova L., Sable I., Semjonovs P.,  Saka M.,  Ruklisha M., Paegle L.,  Vikele L. 2016 Characterization of films and nanopaper obtained from cellulose synthesized by acetic acid bacteria. Carbohydrate Polymers, 144, 33–40.